Search results for "ANO BASIS-SETS"
showing 3 items of 3 documents
Computational determination of the dominant triplet population mechanism in photoexcited benzophenone
2014
In benzophenone, intersystem crossing occurs efficiently between the S-1(n pi(star)) state and the T-1 state of dominant n pi(star) character, leading to excited triplet states after photoexcitation. The transition mechanism between S-1(n pi(star)) and T-1 is still a matter of debate, despite several experimental studies. Quantum mechanical calculations have been performed in order to assess the relative efficiencies of previously proposed mechanisms, in particular, the direct S-1 -> T-1 and indirect S-1 -> T-2(pi pi(star)) -> T-1 ones. Multiconfigurational wave function based methods are used to discuss the nature of the relevant states and also to determine minimum energy paths a…
Modelling Photoionisation in Isocytosine: Potential Formation of Longer‐Lived Excited State Cations in its Keto Form
2021
Abstract Studying the effects of UV and VUV radiation on non‐canonical DNA/RNA nucleobases allows us to compare how they release excess energy following absorption with respect to their canonical counterparts. This has attracted much research attention in recent years because of its likely influence on the origin of our genetic lexicon in prebiotic times. Here we present a CASSCF and XMS‐CASPT2 theoretical study of the photoionisation of non‐canonical pyrimidine nucleobase isocytosine in both its keto and enol tautomeric forms. We analyse their lowest energy cationic excited states including 2π+ , 2nO+ and 2nN+ and compare these to the corresponding electronic states in cytosine. Investigat…
Assessment of the Potential Energy Hypersurfaces in Thymine within Multiconfigurational Theory: CASSCF vs. CASPT2
2016
The present study provides new insights into the topography of the potential energy hypersurfaces (PEHs) of the thymine nucleobase in order to rationalize its main ultrafast photochemical decay paths by employing two methodologies based on the complete active space self-consistent field (CASSCF) and the complete active space second-order perturbation theory (CASPT2) methods: (i) CASSCF optimized structures and energies corrected with the CASPT2 method at the CASSCF geometries and (ii) CASPT2 optimized geometries and energies. A direct comparison between these strategies is drawn, yielding qualitatively similar results within a static framework. A number of analyses are performed to assess t…